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The properties of equilibrium boundary layers 
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SUMMARY 
The recent work on equilibrium (i.e. self-preserving) turbulent 

boundary layers in adverse pressure gradients is compared with 
theoretical predictions based on current generalizations about the 
turbulent shear flow. Using only assumptions of similarity, it is 
possible to show that an equilibrium laver can exist only if the free 
stream velocity varies as a power of distance downstream with an 
exponent greater than - 8 and if the velocity defect from the free 
stream is small. Assuming further that the effective eddy viscosity 
is independent of distance from the wall over the outer part of the 
layer, most of the properties of equilibrium layers may be computed 
from the known behaviour of layers in zero pressure gradient. The 
predicted values of skin friction and the predicted shape and 
magnitude of the mean velocity distribution are in fair agreement 
with the observations of Clauser. Finally, the modifications that 
are necessary if the velocity defect is not small are discussed briefly. 

1. INTRODUCTION 
Much of the recently published work on turbulent boundary layers has 

abandoned the long-standing tradition of purely empirical approach based 
on direct analogy with the behaviour of laminar layers and has begun to use 
generalizations about the characteristics of turbulent shear flow. The 
movement began, perhaps, with the work of Ludweig & Tillmann (1949) . 
who established experimentally that the distribution of mean velocity near 
a smooth wall is independent of the pressure gradient in the free stream, and 
is determined by the shear stress at the wall and the fluid viscosity. This 
conclusion, which has since received abundant experimental confirmation 
(e.g. Coles 1956), is more than an empirical generalization, being a necessary 
consequence of the mixing-length and similarity theories of turbulence and 
indeed of any theory of turbulence that assumes net turbulent transfer of 
energy to be small within the wall region of substantially constant shear 
stress. At much the same time it was being realized that the apparent 
variation in shape of the velocity profiles for a constant pressure layer is an 
illusion, produced by Il‘leasuring velocities relative to the stationary wall 
rather than to the free stream. Profiles of velocity defect from the free 
stream velocity are accurately similar in shape except within the viscous 
layer next the wall (e.g. Clauser 1954). Again, this ‘defect law’ is not 
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only an empirical result but is a consequence of two widely accepted generali- 
zations about turbulent flows, that the general motion of a fully developed 
turbulent flow is independent of the fluid viscosity*, and that developing 
flows tend to a condition of moving equilibrium or self-preservation. 

Although these two results are in a sense experimental rediscoveries of 
much earlier theoretical work (see, for example v. Khrmin (1930) and 
Goldstein (1938)), they are none the less valuable, and their application 
to boundary layers in pressure gradients is of great interest. A funda- 
mental advance in this direction was made by Clauser (1954) who, by trial 
and error adjustment of the external pressure gradient, constructed 
' equilibrium ' boundary layers satisfying the defect law and who discussed 
and analysed their behaviour. It is possible, using only the generalizations 
employed in inferring the existence of a universal velocity profile near a wall 
and the defect law for constant pressure layers, to determine the conditions 
necessary for the existence of an equilibrium boundary layer in a pressure 
gradient (Townsend 1956). The purpose of this paper is to summarize 
the results of this analysis, including the consequences of assuming an 
effective eddy viscosity independent of distance from the wall in the outer 
layer, and then to compare the predictions of this theory with the results and 
generalizations of Clauser (1956). 

2. NOTATION 
Consider a boundary layer on a smooth flat plate whose surface is the 

plane, y = 0. Oz is the direction of homogeneity at right angles to the two- 
dimensional mean flow, and Ox is parallel to the surface and in the general 
direction of the flow. Then, 

are the components of the mean velocity parallel to 
Ox and Oy respectively, 

u, 21, w are the components of the turbulent velocity 
fluctuation parallel to Ox, Oy, Ox, 

u, v 

P is the pressure, 
V is the kinematic viscosity, 

u1, p,  are the Ox component of the mean velocity and the 
pressure in the free stream just outside the layer, 
is the shear stress at the wall, 

K ,  A are the constants in the universal logarithmic 
distribution of mean velocity near a smooth wall 
(equation 3.12), 
is the local coefficient of skin friction, 

friction, 
is the velocity scale of the boundary layer, 

7 0  

Cf = 2r0/u; 
y = ~ t " / K u ,  is a non-dimensional quantity specifying skin 

uo = T$'/K 
* This statement is not inconsistent with the dependence of the velocity profile 

near the wall on fluid viscosity. The  magnitude of the viscosity merely determines a 
velocity of translation for the fully turbulent part of the flow, and velocity differences 
within it are unaffected. 
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6 = v/TA’2exp - -A  is the length scale (or ‘thickness’) of the layer, 

denotes y/6, 
f (q)  = ( U -  Ul)/uo is a universal function specifying the mean velocity 

distribution, 
g,, g2, g12 are functions specifying the distributions of tur- 

bulent intensities and stresses, 

G ) 
71 

r m  r m  

R, = 1 -- - ulx’v is the Reynolds number, l + a  
VT 

Rs = u, S/vT 

S 

C 

is the effective eddy viscosity in the outer layer, 
is a non-dimensional constant relating the effective 
eddy viscosity to  the velocity distribution, 
is a non-dimensional variable of position, 
is a constant determining the scale of the velocity 
defect. 

It should be noted that the pressures and stresses are ‘ kinematic’, that is, 
they are the ordinary mechanical values divided by the fluid density. &o, 
since the pressure in the free stream is related to the velocity by 

its gradient is specified by the variation of free stream velocity. 
most part, we consider a free stream velocity variation 

which represents an adverse pressure gradient if the exponent is negative. 

For the 

u, = Bxa (x > O), (2.4 

3. THE CONDITIONS FOR SELF-PRESERVING DEVELOPMENT OF A 

The defect law for the mean velocity distribution in a boundary layer is 
equivalent to the assumption of self-preserving profiles in a wake, i.e. 

u = G + u o  f ( Y / Q  (3.1), 
where u, and 6 are scales of velocity and length depending on x, and the 
function is independent of x. For the establishment of a self-preserving 
flow it is necessary that the distributions of shear stress and turbulent 
intensities should be expressible in terms of the same scales by other functions 
independent of distance downstream, say 

BOUNDARY LAYER 

- - - 
uu = u:glZ(Y/6), u2 = uXgdy/% u2 = U k d Y / 8 ) .  ( 3 . 4  

Naturally, the distributions must satisfy the equations of mean motion, 
which, for the boundary layer, and to the approximation usually found 
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sufficiently accurate, can be reduced to the single equation, 

(3.3) 
au, a2u 

ax 1 ax ay2 
= u - + v - .  

au au a$ a(2-2) 
ax ay ay u- +v- + - + 

I n  terms of the self-preserving functions of equations (3.1), and (3.2) this 
may be written 

where dashes indicate differentiation with respect to 7. 
This equation may be satisfied exactly by self-preserving functions 

independent of x if the ratios of the non-zero coefficients are independent 
of x. For laminar flow, the functions representing the fluctuating motion 
are identically zero and self-preserving flow is possible either if 

or if 

(Goldstein 1939). 

uo = u, oc X U ,  6 cc x(l-a)/Z, (3.5) 

uo = U, oc ep'", 6 cc e-(l'z)ps, (P > O), (3.6) 
If 6 is now defined by 

a2dU1 2a 
v dx l + a  = n say, -- = - 

substitution in equation (3.4) gives an equation for f ( q ) ,  

anf-f' ( q +  1: f dq ) +nf2  =f". (3.7) 

(The exponential flow (3.6) corresponds to n = 2.) 
dimensional stream-function defined by 

is introduced, this becomes the Hartree form of the Falkner-Skan equation, 

I t  is known that acceptable solutions satisfying the boundary conditions, 
#(O) = t,b'(O) = 0, #"'(O) = - n, I/'( m) = 1, exist only if n > - 0.199 or 
a > - 0.11 (Hartree 1937). This sets a lower limit to the possible values of 
the exponent and to the severity of the adverse pressure gradient. 

In turbulent flow, a self-preserving flow is possible only if 

When the non- 

#'(?I = 1 +f ( 4 9  

i,V' i- ##" = n(yP- 1). ( 3 4  

uo u, = (xo-x)-l, 6 cc (xo-x),  (x, > x),  (3.9) 
corresponding to the accelerated boundary layer within a wedge. The 
equation may be satisfied approximately if the velocity defect is small, that 
is, if 

-uof < Ul, (3.10) 
unless 7 4 6. Then equation (3.4) may be approximated by 

(3.11) 
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except very close to the wall where direct viscous stresses are appreciable. 
The existence of a wall layer within which the velocity distribution is given 

implies that we may choose as scales 
U, = rA"/K 

and 

(3.12) 

(3.13) 

It may then be shown that self-preserving flow is only possible for free 
stream velocity variations of three types, 

(a) 
(b)  U,  = B(-x)a (x > 0, a < -+), 

U, = Bxa (x > 0, a > - +), 

(c) u, = BY" ( p  > 0). 
Of these only the first can represent retarded flow (for 0 > a > - 4) and 
correspond with an equilibrium layer of the type studied by Clauser. For 
this type of velocity variation, the relation betweeR wall stress and position 

(3.14) 
is given by 1 u , x  

y = K-31, y-zexp - - A  = - - (: ) 3 a + l  v 

with the approximation (3.10). Here y = rA'2/KUl is a friction parameter, 

and I ,  = -1 f(9) d r  is a constant of the flow and a function of a. It  should 

be emphasized that the wall stress is uniquely related to the velocity in the 
free stream and so to the position. The existence of the proper variation 
of free steam velocity (or pressure) alone is not sufficient to ensure self- 
preserving development ; the boundary layer must be matched to the 
pressure gradient. 

m 

0 

Clauser has observed that the parameter 

where 6" = IOm( 1 - 6) dy, 
S* d P ,  n = -- 
ro dx ' 

is independent of x in an equilibrium layer. In the present notation, 
I ,  uo6 dU, a 
K2u,2 dx 1 + 3 a '  

l-I= = - (3.15) 

using equations (3.13) and (3.14). The constancy of this parameter is a 
simple consequence of this very general theory of boundary layers with a 
small velocity defect. It is also the condition that the terms in the equation 
for the momentum integral should preserve a constant ratio. 

4. THE VELOCITY DISTRIBUTION IN THE OUTER PART OF AN EQUILIBRIUM 

Experience with other self-preserving free turbulent flow suggests that 
an acceptable description of the mean velocity distribution may be obtained 
by assuming an effective eddy viscosity constant over the outer part of the 

LAYER 
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layer, the mean velocity distribution due to this being joined smoothly to 
the logarithmic distribution that obtains in the inner layer (Clauser 1956, 
Townsend 1956). Clauser has done this without assuming the velocity 
defect to be small. His results can be derived assuming the relation (3.14) 
between wall stress and position, although this relation is not accurate for 
finite velocity defect, I n  the outer layer, the terms of equation (3.4) that 
involve the turbulent intensities are usually negligible, and then, putting 

where u,, S/vT = Re, a constant depending on a, the equation of mean motion 
.becomes 

2a a -f+ - I1 

m ; - 1 + 3 a  

I n  terms of a new position variable s = 71, this is 

The non-dimensional stream function defined by 

satisfies the equation 

This is the Hartree equation with two differences. The first and obvious 
ane is that the coefficient outside the bracket is half its value in the equation 
for laminar flow (3.8), and the second is that the boundary condition at s = 0 
is no longer #(O) = 0 but $’(O) = 1 + yf(0). This boundary condition is 
not independent of x, and does not conform to the initial assumption of self- 
preservation. 

For very small velocity defect in the outer layer, the equation forf(s) 
becomes 

$“ = l + Y f ( S )  

f” +$$” = + z ( $ j 2 -  1). (4.4) 

d2f df 
ds2 +s-  -nf = 0. 

ds (4.5) 

The appropriate solution of this equation is a multiple of the function 
Hh,(s), defined by 

Hh,(s) = lom 5 exp[ - &(t + s ) ~ ]  dt. 

The complete variation of mean velocity is obtained by adjusting the 
multiplying constant of the function describing the variation in the outer 
layer to give a smooth junction with the velocity distribution in the inner 
layer where 

f(d = log17. (4.7) 
At high Reynolds numbers, part of the region of constant stress is within 

the region of small velocity defect, so that the mean velocity distribution 
within this region of overlap must be both self-preserving and identical 
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with the universal logarithmic profile. The conditions for this have been 
given as equations (3.13), and this process of matching the velocity profile 
for constant eddy viscosity to the logarithmic profile is no more than a 
working approximation consistent with these conditions and the assumptions 
of self-preservation. 

5. THE HYPOTHESIS OF LARGE EDDY EQUILIBRIUM 

There is a considerable body of evidence showing that the rate of spread 
of a turbulent flow into the ambient undisturbed fluid depends on the 
presence of a system of large eddies which are also responsible for the 
observed intermittency of turbulent flow near the free stream boundary. 
The author has postulated that these large eddies are an integral part of the 
mechanism that regulates the intensity of the turbulent motion and the rate 
of entrainment of non-turbulent fluid (Townsend 1951, 1956). By assum- 
ing a plausible form for these eddies, it is possible to obtain a complete 
solution for the boundary layer problem in terms of the universal constants, 
K and A, of equation (3.12) and of two numbers specifying the position and 
scale of the large eddies with respect to the mean velocity distribution. 
Estimates of these numbers may be made from a consideration of the origin 
and dynamics of the large eddies, or they may be determined by analysing 
experimental measurements of the layers. If it is assumed that these 
numbers are independent of pressure gradient, all the properties of equi- 
librium boundary layers can be predicted from the known properties of 
constant-pressure layers without ambiguity. For details, reference should 
be made to the full account (Townsend 1956). 

To these approximations, the mean velocity distribution consists of the 
distribution 

in the inner layer (say for 7 < vo) and the distribution 

where 

f ( d  = (5.1) 

f(d = -CHha(S), (5.2) 

in the outer layer (q > 7,). As Clauser points out, the experimental deter- 
mination of mean velocity profiles is not sufficiently accurate to make profit- 
able a comparison of the shapes of observed and predicted profiles, and the 
test of a theory must be the prediction of the scales of variation. 

If the velocity distribution in the outer layer is extrapolated to the wall, 
the extrapolated velocity there, U,, should be given by 

The scale of velocity variation is so defined by the constant C, which is given 
bY C2 I: -[" 1 1*7n(T) ! -  l + n  22+n 7 { ( T ) ! > a ] ,  l + n  (5.4) 

l + n  dn 
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tht  constants, 22 and 1.7, being selected to conform to observations of 
constant-pressure layers. If ( 1  + n) is small, 

Distribution I 
Distribution I1  

6-66 
c2 = - 

l + n '  

-- 
2 -0-286 0.20 117 
7 -0.318 0.0667 1/22 

Clauser uses two scales of distance from the wall. The first is 
A = J  -* T d y = A S  u,- u 

0 0  K '  

(5.5) 

Distances expressed in this scale are related to distances expressed in the 
scale of the variable s (equation (4.3)) by 

+ s = [K( 1 + n)]"2 s. i = (m) (5.7) 

The second scale is So, the total thickness of the layer, presumably the 
distance from the wall beyond which the mean velocity variation is im- 
perceptible. 

Clauser expresses the eddy viscosity in the outer layer in terms of the 
non-dimensional constant, k, which is given by 

This scale will be roughly three times the scale of s. 

121 Kd2 1*Z2" 
l + n  22+n n + l  2 '  (5.8) = Ill?* = 22 1 U1S* - = -  

k 'T - 47 1*7m(--2-)!- 7T {(T)!} 
The comparison of these predictions with Clauser's measurements is 

shown in figures 1 and 2, using the values of n in table 1 computed from 
equation (3.15). This procedure gives a definite value for a, and should 

make some allowance for the effect of a finite velocity defect. These values 
of a are in fair agreement with the observed distributions of free stream 
velocity (figure 3). 

The computed variation of C agrees fairly well with observation, the 
difference being most marked for the lesser pressure gradient. The theory 
also predicts a nearly constant value for K in agreement with Clauser's 
findings, although the computed values are 20-25 % less than the observed 
values. This is caused by the use of the velocity profile (5.2) to compute I p  
By overestimating the velocity defect near the free stream, this leads to 
values of Il about 10% greater than the true values. The constancy of k 
is not unexpected as U, 6s = [ ( U, - U) dy is nearly the simplest possible 

expression for the product of length and velocity scales for distributions of 
nearly similar shapes. 

m 

+ o  
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Figure 1. Computed variations of the constants C and II with n (circled points from 
Clauser's measurements). 
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Figure 3. Comparison of Clauser’s pressure distributions with the appropriate 
power laws. 

Comparison of predicted and observed scales of distance may be made 
by computing the position at which the velocity defect is one-half of the 
extrapolated velocity defect, U,- U,,, or the position at which the velocity 
defect is small. 

Lastly, the skin friction may be computed from the friction equation 
Some results of this comparison are shown in table 2. 

using values of Il given by 

II = [(1+n)C2+1]exp [ 1-- g;3 (5.10) 
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Obs. 

1.26 
1.26 

_____ 

- 

I f  1 +n is small, this is nearly 

Calc. 

1.18 
1.18 
- 

1, = 7.66exprl- (E)””] 

6.35 
12.0 
3.58 

L 

0.41 
0.45 
- 

Distribution I 
Distribution I1 
Constant pressure 

SO 

Obs. 

3.06 
2.81 
2.37 

571 

(5.11) 

0.010 
0.018 
0.025 

Table 2 

Figure 4. Observed and theoretical distributions of friction coefficient. 

Figure 4 compares the predicted values of local friction coefficient with the 
experimental measurements. The agreement is good only for the larger 
pressure gradient. 

6. THE CRITICAL VALUE OF THE POWER LAW EXPONENT 

The theory for small velocity defect in the outer layer, which is valid at 
extremely high Reynolds numbers (equation (3.14) shows y to decrease in- 
definitely with increasing Reynolds number), predicts that equilibrium 
layers exist only if a ;> -1 3. The basis of this prediction is the necessity 
for a positive value of the friction function Y. If the effective eddy viscosity 
is constant within the outer layer, equation (4.6) shows that self-consistent 
velocity profiles exist, the critical profile for a = - $  being 

which has a zero gradient at the wall indicating zero wall stress. 
f(s) = - c r 1 / 2 8 ° ,  (6.1) 
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There are two simple ways of looking at the consequences of finite 
velocity defect, viz. by including second-order terms in the derivation of the 
stress-position relation (assuming self-preservation of velocity profiles and 
wall stress) or by finding the range of a for which the modified Hartree 
equation (4.4) has acceptable solutions (assuming that the coefficients of 
equation (3.4) may be computed from the relation (3.14)). Ideally, both 
should be investigated but the result is a modified form of equation (4.4) 
whose solutions have not been studied. 

The equation for the momentum integral is 

(: A) = K3, (6.2) 4 - - (21, - I ,  y ) ~ - ~  exp - - v dU 
U? dx 

where terms of order less than y have been omitted. 
function 

With the use of friction 

it becomes 

(6.4) 

to the same approximation. Since y is a slowly varying quantity, an 
approximate solution may be obtained by neglecting its variation. This is 

which has meaning only if 

1 ' - 3 + 2 4 2  + 412/4) * 

The quantity y12/Il is nearly proportional to the velocity defect ratio 
( V, - U,)/ V,. For the critical velocity profile defined by equation (6.1), 

I2 c 1 U1-V0 
4 - -y  = 117y = 112 -- u, * 

Alternatively, we may suppose the development of the layer to be des- 
cribed by the theory for small velocity defect, and look at the conditions for 
acceptable solutioris of the modified Hartree equation (4.4) for various 
defect ratios. Numerical solutions quoted by Clauser (1956) show that 
the critical value of the exponent varies with defect ratio in the way shown 
in figure 5. A comparison with critical values obtained from equations 
(6.6) and (6.7) shows fair agreement between the two estimates only for 
small velocity defect ratios. 

Neither of these arguments is altogether satisfactory and further work 
is desirable. 
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-0.2 

- 0.1 

0 -  
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\+ \l - 
0 from equation (bbt + 
+ f r o m  solutions of evotion (4.4) 

- - 

I 1 I I 

7. CONCLUDING REMARKS 

The properties of self-preserving or equilibrium boundary layers may 
well prove to be of considerable importance in the understanding of the 
general behaviour of boundary layers in pressure gradients. The theory 
based on the assumptions of small velocity defect and large eddy equilibrium 
fits the observations of Clauser as well as can be expected in view of the 
comparative crudity of the theory and the absence of disposable constants. 
It should be noted that the hypothesis of large eddy equilibrium is very 
nearly equivalent to assuming eddy viscosity to be a universal multiple of 
the integral of the velocity defect. 

The condition that the velocity defect is small is satisfied very weakly in 
the experimental layers, and better agreement between theory and experi- 
ment might be obtained by considering the effects of finite defect. 
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